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A compliant offshore tower is modelled as a structure having extensional and transverse
degrees of freedom. McIver’s extension of Hamilton’s principle is applied to the system,
resulting in coupled non-linear equations of motion, due to the assumption of small strain
and moderate rotation. The equations of motion are discretized using finite differences and
solved numerically. Several forms for the vortex-shedding load are tested, as well as
experimental force data. To better understand the model response, Monte Carlo
simulations are performed. The results show the feasibility of the present model for
representing the response of a compliant structure subject to transverse loading.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

The problem of vortex shedding from bluff bodies has been studied for over a century,
reflected by the extensive literature on the subject. Many mathematical models for vortex-
induced vibration exist in the literature, and are well enumerated in previous review papers
on the subject. Some of the more recent of these include Sarpkaya [1], Bearman [2], Billah
[3], and Kuchnicki [4]. This paper applies a novel approach to this century-old problem.

1.1. OFFSHORE STRUCTURES

Offshore structures are used for many purposes in the oil industry, including
exploration, storage, and production. Two general types of offshore structures exist for
these applications: Fixed structures, which resist wind, wave, and current forces with
negligible displacement, and compliant structures, which experience small displacements
that cannot be neglected. While the fixed structure has been a standard for many years in
offshore applications, the need to exploit resources located in deeper water, combined with
the bulkiness and impracticality of fixed structures in deep water applications, makes
compliant structures an attractive and viable alternative.

An extensive review of the different types of compliant offshore structures is given by
Adrezin et al. [5]. The major types are the articulated tower (Figure 1) and the tension leg
platform (Figure 2). The articulated tower consists of a shaft holding several buoyancy
and ballast chambers, attached to the ocean floor by a universal joint. The tension leg
platform has a large ballast chamber secured to the ocean floor by four, eight, or more
0022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.



Figure 1. Schematic of a typical articulated tower.

Figure 2. Typical tension leg platform.
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tendons. In general, the vertical shaft of the articulated tower and the tendons of the
tension leg platform can both be modelled as flexible beams.

A compliant structure undergoes loading due to wind and wave forces, as well as other
forces due to shedding of vortices. Han and Benaroya [6, 7], examined the free response of
such a structure, and its response to empirical (Morison) wave loads. This study looks at
the third category, forces due to vortex-shedding loads. This work is in concert with an
experimental effort by Dr Timothy Wei at Rutgers University, and so the system examined
is related as closely as possible to the experimental set-up. In particular, the cylinder
properties and torsional spring constant are from the experimental set-up. Also, since the
experiment is constrained to transverse motion (there is no streamwise deflection allowed),
our formulation omits streamwise deflection.
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2. MCIVER’S EXTENSION

Before we derive the equations of motion for our system, a brief review of McIver’s
pioneering work is warranted. McIver [8] coupled Reynolds’ transport theorem and
Hamilton’s principle. The result is a new theory that allows Hamilton’s principle to be
applied to fluid–structure systems using a control volume approach.y We briefly introduce
McIver’s work here; further detail can be found in references [8, 9, 4]. This work is a
continuation of Benaroya and Wei [9]. McIver’s extension begins with d’Alembert’s
principle for a continuous system

dLþ dW � d

dt

Z
v

ðrUÞ�dr ¼ 0; ð1Þ

where dr is a vector of virtual displacements, with one component for each degree of
freedom of the system, and v is the volume of the system. Reynolds’ transport theorem
states:

d

dt

Z
system

ðrQÞ dv ¼
Z

CV

@

@t
ðrQÞ dv þ

Z
CS

ðrQÞU�n ds: ð2Þ

Here, Q represents the property of interest per unit mass (intensive property), r is the fluid
density, Uðx; tÞ is the fluid velocity at any point on the control surface, and nðxÞ is an
outward normal vector of the control surface.z This relation is a statement that the rate of
change of Q in the system is equal to the rate of change of Q within the control volume plus
the net flux of Q across the control surface. If our property of interest is U�dr; then the
integral on the left-hand side of equation (2) is identical to the integral in equation (1).

Substitution gives the relation

dLsystem þ dW �
Z

CV

@

@t
ðrUÞ�dr dv �

Z
CS

ðrUÞ�drðU� VcontrolÞ�n ds ¼ 0; ð3Þ

where the mass of the system in the Lagrangian ðLsystemÞ is not fixed. Integrating equation
(3) between the times t1 and t2; requiring the variations at the end times to be zero
(eliminating the volume integral), leads us to the following restatement of Hamilton’s
principle:

d
Z t2

t1

Lsystem dt þ
Z t2

t1

dW dt �
Z t2

t1

Z
CS

ðrUÞ�drðU� VcontrolÞ�n ds dt ¼ 0: ð4Þ

The virtual work of the system is due to all non-potential forces acting on the system,
including those due to surface tractions on the control surfaces. Specifically, these surface
tractions are expressed as

dW ¼
Z

open CS

ð�pnþ t0Þ�dr ds þ
Z

closed CS

ð�pnþ tcÞ�dr ds; ð5Þ

where �pn is the inward normal pressure on the control surface, t0 is the shear stress on
the open control surface, and tc is the shear stress on the inner control surface.

The forcing functions used later in this paper will be assumed to include the fluid
portions of the Lagrangian as well as these surface tractions.
yNormally, Hamilton’s principle is only applicable to systems described as collections of particles.
zThe subscripts CV and CS refer to integrals over the control volume and control surface respectively.
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3. ASSUMPTIONS AND FORMULATION

One of the advantages of the derivation above is that it is applicable to a general system
Lagrangian. To derive the Lagrangian for the work at hand, we consider a beam of length
L in the undeformed state. Elements of the beam are located by their location in the
undeformed state, X : The midplane for the reference (undeformed) and current
(deformed) configurations is given in Figure 3.

Applying Kirchhoff’s hypothesis, we write the displacements as

u1ðX ;Y ; tÞ ¼ uðX ; tÞ � Y
@

@X
½vðX ; tÞ
;

u2ðX ; tÞ ¼ vðX ; tÞ; u3ðX ; tÞ ¼ 0; ð6Þ
where uðX ; tÞ is the deflection of the midplane in the x direction, and vðX ; tÞ is the
deflection in the y direction. The co-ordinate Y is the distance from the midplane to the
point of interest in the reference configuration. If we have a symmetrical cross-section,
uðX ; tÞ is also the average deflection of the beam element at X : We assume small strains
and moderate rotation. Mathematically, the consequences are

@u1

@X
� @u2

@X

� �2

{1; ð7Þ

or in terms of the midplane deflections,

@u

@X
� @v

@X

� �2

{1: ð8Þ

The conditions under which Kirchhoff’s hypothesis is valid are that the strains are small
compared to the rotation. Thus, equation (8) is a formal mathematical statement of the
implicit assumptions we made to arrive at our displacement field.

Applying the assumption of small strain and moderate rotation, we get the Green
strains:

EXX ¼ @u1

@X
þ 1

2

@u2

@X

� �2

; EYY ¼ @u2

@Y
; EZZ ¼ 0;

EXY ¼ 1

2

@u2

@X
þ @u1

@Y

� �
; EYZ ¼ 0; EXZ ¼ 0: ð9Þ
Figure 3. Midplane of the tower system in the original and deformed states.
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Substituting our assumed displacement field into equation (6) gives the Green strains for
our problem:

EXX ¼ @u

@X
� Y

@2v

@X 2
þ 1

2

@v

@X

� �2

; EYY ¼ 0; EXY ¼ 0: ð10Þ

If we ignore the Poisson effect, the second Kirchhoff stress is given by

*ssXX ¼ EEXX ; ð11Þ

where E is Young’s modulus of the material in question.

4. ENERGIES AND THE LAGRANGIAN

Let us first examine the strain energy of the beam, given by

PEstrain ¼ 1

2

Z
V0

*ssijEij dV0; ð12Þ

where V0 is the volume of the undeformed beam. We substitute the expressions for the
second Kirchhoff stress and the Green strain to obtain

PEstrain ¼ 1

2

Z
X

Z
A0

u0 � Yv00 þ 1

2
v02

� �2

dA0 dX ; ð13Þ

where primes denote differentiation with respect to X and A0 is the cross-sectional area in
the undeformed state. We can expand the integrand to

PEstrain ¼ 1

2

Z
X

Z
A0

E u02 � 2Yu0v00 þ u0v02
�

þ Y 2v002 � Yv02v00 þ 1

4
v04

�
dA0 dX : ð14Þ

Since we have assumed a symmetric cross-section, integration over the entire area
eliminates terms containing odd powers of Y ; and turns terms containing Y 2 into terms
with the area moment of inertia I0 about the neutral axis. The remaining terms are
functions of X and t:

The torsional spring has potential energy given by

PEspring ¼ 1
2ky

2; ð15Þ

where y is the angle of twist for the torsional spring. Assuming small angles, this angle can
be expressed as the first spatial derivative of the transverse deflection at the base, or v0ð0; tÞ:

Adding PEstrain to PEspring gives the total potential energy of the system

PE ¼ 1

2

Z L

0

EA0 u0 þ 1

2
v02

� �2

þEI0v
002

" #
dX þ 1

2
kv02ð0; tÞ: ð16Þ

The kinetic energy consists of the kinetic energy of the beam and the kinetic energy of
the point mass. The kinetic energy of the beam is given as

KEbeam ¼ 1

2

Z L

0

Z
A0

½rð ’uu2
1 þ ’uu2

2Þ
 dA0 dX ; ð17Þ
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where dots denote differentiation with respect to time. Substituting the displacement field
from equation (6) leads to

KEbeam ¼ 1

2

Z L

0

Z
A0

½ð ’uu � Y ’vv0Þ2 þ ’vv2
 dA0 dX

¼ 1

2

Z L

0

Z
A0

ð ’uu2 � 2Y ’uu’vv0 þ Y 2 ’vv02 þ ’vv2Þ dA0 dX

¼ 1

2

Z L

0

½rA0ð ’uu2 þ ’vv2Þ þ rI0 ’vv
02
 dX ; ð18Þ

where we note again that since we have assumed a symmetric cross-section, odd powers of
Y vanish when integrated over the entire area, and Y 2 becomes the area moment of
inertia. The kinetic energy of the point mass is simply

KEmass ¼ 1
2
Mp½ ’uu2ðL; tÞ þ ’vv2ðL; tÞ
: ð19Þ

Adding equations (18) and (19) gives the total system kinetic energy

KE ¼ 1

2

Z L

0

½rA0ð ’uu2 þ ’vv2Þ þ rI0 ’vv
02
 dX þ 1

2
Mp½ ’uu2ðL; tÞ þ ’vv2ðL; tÞ
: ð20Þ

The term rI0 ’vv
02 is Rayleigh’s rotational term, or the kinetic energy due to the rotation of

the cross-section. Even though this term is usually small in comparison to the translational
kinetic energy of the beam, we will not ignore it for this analysis. Note also that we have
made no statement about the density, area A0 or area moment of inertia I0: They can be
constant or functions of X :

We wish to apply Hamilton’s principle to the beam system. Thus, we first need the
Lagrangian of the tower, defined as L ¼ KE � PE: Also, we define the forces acting on
the system in the directions of u and v as fuðX ; tÞ and fvðX ; tÞ respectively.

5. HAMILTON’S PRINCIPLE

We state Hamilton’s principle as

d
Z t2

t1

Lstructure dt þ
Z t2

t1

dH dt ¼ 0; ð21Þ

where the virtual work on the system, dH; is given by

dH ¼ dW þ
Z

CS

ðrUÞ�drðU� VcontrolÞ�n ds

¼
Z L

0

½fuðX ; tÞdu þ fvðX ; tÞdv
 dX : ð22Þ

Recall that dW was defined in equation (5). The force fuðX ; tÞ is that due to gravity and
buoyancy, and the force fvðX ; tÞ is the transverse vortex-shedding load.
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Let us concentrate on the Lagrangian portion of equation (21):

d
Z t2

t1

Lstructure dt ¼
Z t2

t1

Z L

0

rA0ð ’uudu þ ’vvdvÞ þ rI0 ’vv
0d’vv0½f

� EA0 u0 þ 1

2
v02

� �
ðdu0 þ v0dv0Þ � EI0v00dv00

�
dX

þ Mp½ ’uuðL; tÞd ’uuðL; tÞ þ ’vvðL; tÞd’vvðL; tÞ

� kv0ð0; tÞdv0ð0; tÞg dt: ð23Þ

We integrate individual terms by parts, with the goal of arriving at terms multiplied by du

and dv: This procedure results in

d
Z t2

t1

L dt ¼
Z t2

t1

Z L

0

�rA0 .uu þ @

@X
EA0 u0 þ 1

2
v02

� �� �	 

du

�

þ �rA0 .vv þ
@

@X
EA0 u0 þ 1

2
v02

� �
v0

� �	

þ rI0 .vv
00 � @2

@X 2
ðEI0v00Þ



dv dX

�
dt

þ
Z t2

t1

@

@X
ðEI0v00Þ � rI0 .vv

0 � EA0 u0 þ 1

2
v02

� �
v0

� �
dv

	 
����
L

X¼0

dt

þ
Z t2

t1

�EA0 u0 þ 1

2
v02

� �
du � EI0v

00dv0
� �����

L

X¼0

dt

�
Z t2

t1

Mp½ .uuðL; tÞduðL; tÞ þ .vvðL; tÞdvðL; tÞ
 dt

�
Z t2

t1

kv0ð0; tÞdv0ð0; tÞ dt; ð24Þ

where we note that the variation at the end times t1 and t2 are assumed zero, which results
in the elimination of terms integrated by parts in time. Now, we apply Hamilton’s
principle as stated in equation (21) to get the equations of motion:

rA0 .uu � @

@X
EA0 u0 þ 1

2
v02

� �� �
¼ fu;

rA0 .vv �
@

@X
EA0 u0 þ 1

2
v02

� �
v0

� �
� rI0 .vv

00 þ @2

@X 2
ðEI0v

00Þ ¼ fv ð25Þ

and the corresponding boundary conditions

EA0 u0 þ 1

2
v02

� �
du

����
L

X¼0

þMp .uuðL; tÞduðL; tÞ ¼ 0;

@

@X
ðEI0v

00Þ � rI0 .vv
0 � EA0 u0 þ 1

2
v02

� �
v0

� �
dv

����
L

X¼0

�Mp .vvðL; tÞdvðL; tÞ ¼ 0;

EI0v00dv0jLX¼0 þ kv0ð0; tÞdv0ð0; tÞ ¼ 0: ð26Þ

For the problem at hand, these boundary conditions become

uð0; tÞ ¼ 0; vð0; tÞ ¼ 0; v00ðL; tÞ ¼ 0; ð27a2cÞ

kv0 � EI0v
00jX¼0;t ¼ 0; ð27dÞ
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EA0 u0 þ 1

2
v02

� �
þ Mp .uu

����
X¼L;t

¼ 0; ð27eÞ

@

@X
ðEI0v

00Þ � rI0 .vv
0 � EA0 u0 þ 1

2
v02

� �
v0

� �
� Mp .vv

����
X¼L;t

¼ 0: ð27fÞ

6. NUMERICAL ISSUES AND DISCRETIZATION

6.1. DENSITY, AREA, ANDAREA MOMENT OF INERTIA AS FUNCTIONS OF X

The actual tower has three types of sections: hollow (air-filled) acrylic, solid acrylic
(where the plugs are located), and water-filled acrylic. Using the co-ordinates in the
schematic, as well as the numbering conventions there, we arrive at relatively simple
functions for the density, area, and area moment of inertia:

rðX Þ ¼ r1 þ ½HðX � X2HÞ �HðX � X3HÞ
ðr3 � r1Þ; ð28Þ

A0ðX Þ ¼A1 þ ½HðX � X1LÞ �HðX � X1HÞ
þ HðX � X2LÞ �HðX � X3HÞ
ðA2 � A1Þ; ð29Þ

I0ðX Þ ¼ I1 þ ½HðX � X1LÞ �HðX � X1HÞ
þ HðX � X2LÞ �HðX � X3HÞ
ðI2 � I1Þ; ð30Þ

where HðX Þ is the Heaviside function, defined by

HðXÞ ¼
0 X50;

1 X50:

(
ð31Þ

Note that the derivative with respect to X of HðXÞ is the Dirac delta function, dðX Þ; and
the second derivative of the Heaviside function is the Dirac doublet function. If we
discretize the tower in such a way as to avoid the actual points of discontinuity (X1L;X1H;

etc.) then the derivatives of these tower properties with respect to X will be zero.
As a first approximation, we ignore these discontinuities in the tower properties. In

practice, their inclusion makes the equations of motion stiff. These stiff equations proved
difficult to solve for any useful time period, even when specialized solution routines for
stiff equations were used.

6.2. FINITE DIFFERENCES AND BOUNDARYCONDITIONS

To analyze the tower motion, using MATLAB, we discretize it into N nodes. We
represent spatial derivatives using central difference operators, as explained by previous
authors [10, 4]. In order to use this method, we need to use the boundary conditions to find
the displacements at several ‘‘dummy nodes,’’ having indices �1; 0; N þ 1; and N þ 2: The
boundary conditions will provide us with equations for displacements u1; uNþ1; v0; v1;
vNþ1; and vNþ2; where ur represents the displacement u at node r:

Looking at the first two boundary conditions (equations (27a) and (27b)), we arrive at
the relations

u1 ¼ 0; v1 ¼ 0: ð32Þ
Note that, from the definition of the central difference operators, v�1 is only needed to

find v0001 and v00001 : Since we have the constraint v1 ¼ 0; we do not evaluate the equation for
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v1; and thus do not need v�1: Continuing on to the boundary condition for the moment at
the top of the beam in equation (27c), we find

vNþ1 ¼ 2vN � vN�1: ð33Þ

We next evaluate the boundary condition balancing the moment at the bottom with the
spring moment (equation (27d)). Keeping in mind the constraint v1 ¼ 0; we arrive at

v0 ¼
kh � 2EI0

kh þ 2EI0
v2; ð34Þ

where h is the spacing between nodes. Next, we evaluate uNþ1 from the vertical force
boundary condition at the top end (equation (27e)):

uNþ1 ¼ uN�1 �
1

h
½vN � vN�1
2 �

2hMp

EA0

.uuN : ð35Þ

This equation will provide us with some coupling between second derivatives of u and v

near the top of the tower. Finally, we get vNþ2 from equation (27f ), noting that we can
solve equation (27e) for EA0ðu0 þ 1

2
v02Þ:

vNþ2 ¼ 4½vN � vN�1
 þ vN�2 þ
2h2

E
rþ Mph

I0

� �
.vvN

� 2rh2

E
.vvN�1 �

2h2Mp

EI0
½vN � vN�1
 .uuN : ð36Þ

This last equation more explicitly provides coupling between several accelerations of u and
v at the top of the tower.

We can use the above relations plus the finite difference operators to construct a set of
2N equations of motion for the displacements u and v at the N nodes. The order of error is
equal to h2; the square of the spacing between nodes.

6.3. THE ‘‘SMALL STRAIN’’ASSUMPTION

We made use of Kirchhoff’s hypothesis in the derivation for the two-degree-of-freedom
equations, which is valid only for small strains. This means that we need to check the
results of the MATLAB simulations to see if our strains lie within the elastic region. The
tower material is acrylic (polymethylmethacrylate, or PMMA), with Young’s modulus of
3�174 GPa and flexural strength 131 MPa: This means that the tower can experience up to
about 4% strain and remain within the elastic region.

The question is then, how do we find the strain, given the displacement field? There are
two methods, the first of which serves as a quick calculation, and the second as the more
exact method. To get a quick idea, we can look at the transverse displacement of the
second node, and treat that as being completely due to rigid-body motion. Dividing this
displacement by the spacing between nodes gives the tangent of the rigid-body rotation
angle, which is then used to find the rigid-body displacement and strain at the top node. Of
course, this method suffers from a flaw, specifically that some of the transverse deflection
of node two may be (and likely is) due to deflection, so the angle found via this procedure
is only an estimate.

To find the angle more exactly, we invoke equation (27d), with the substitution v0ð0; tÞ ¼
yðtÞ: Solving for yðtÞ gives

yðtÞ ¼ EI0

k
v00ð0; tÞ: ð37Þ
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We can take this further, however, using the finite difference relations, since

v00ð0; tÞ ¼ v001ðtÞ ¼
v2ðtÞ � 2v1ðtÞ þ v0ðtÞ

h2
: ð38Þ

Recall that v1ðtÞ ¼ 0 by constraint, and that we have an expression for v0ðtÞ from
equation (34). We can then restate equation (37) as

yðtÞ ¼ EI0

kh2
1þ kh � 2EI0

kh þ 2EI0

� �
v2ðtÞ: ð39Þ

For the system in question, k ¼ 9�7098 N m=rad; E ¼ 3�174 GPa; I0 ¼ 8�509� 10�9 m4;
h ¼ 0�0658 m: So the factor multiplying v2ðtÞ is 15�02 for the results that follow.

7. RESULTS AND DISCUSSION

7.1. TOWER SPECIFICS AND FORCING

Table 1 lists the properties for the tower used here. As mentioned above, we ignore the
changes in tower properties caused by the plugs and water within the tower.

Since we are dealing with a discretized system of 20 nodes, we apply transverse forces to
the nodes that are below the waterline only. The same is done with the vertical buoyancy
force; it is applied solely to the nodes below the mean-water level. We also applied equal
forces to each node, which implicitly ignores three-dimensional effects.

The form chosen for the vortex-shedding load is sinusoidal. We chose this form because
the data from Dr Timothy Wei’s experimental set-up at Rutgers University (upon which
this system is based) showed both a sinusoidal cylinder motion and sinusoidal energy
inputs, especially for the work done by pressure forces.

We tried several different sinusoidal forms for the vortex-shedding load. We varied
amplitudes and frequencies, and finally settled on a Fourier-series formulation that
contained as many as 50 frequencies, to try and include some of the high-frequency energy
inputs observed in the water-tunnel experiments.

7.2. RESULTS

We began with a simple forcing function, F0 ¼ 0�002 sinð10tÞ; with zero initial
displacement and velocity. (Note that F0 is the force applied to each node.) The results
are plotted in Figures 4 and 5. The time scale of Figure 4 is too short to show the details of
Table 1

Cylinder properties

Property Value

Young’s modulus, E 3�174 GPa
Cross-sectional area, A0 1�196� 10�4 m2

Area moment of inertia, I0 8�509� 10�9 m4

Torsional spring stiffness, k 9�7098 N m=rad
Tower length, L 1�2509 m
Water depth, d 1�0668 m
End mass, Mp 0�1533 kg
Tower density, r 1136 kg=m3

Number of nodes, N 20
Node spacing, h 0�0658 m



Figure 4. (a) Extensional and (b) transverse responses to F0 ¼ 0�002 sin 10t for 0�1 s:

Figure 5. Transverse response to F0 ¼ 0�002 sin 10t for a 30-s time period.
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the high-frequency extensional motion and its coupling to the transverse motion. The
high-frequency extension is expected since only gravity and buoyancy act in the
longitudinal direction of the tower. As shown, the maximum amplitude is around
15 mm: The extensional behavior is the same for all parameter runs in this study, and is



S. N. KUCHNICKI AND H. BENAROYA914
omitted from the remaining plots for brevity. The transverse deflection, shown for 30 s in
Figure 5 shows oscillatory behavior at several frequencies, of which one is due to coupling
with the extensional motion, one due to forcing, and the rest from the natural frequencies
of the structure. Also, the maximum strain is calculated as 2�8%: To illustrate the
distribution of energy, we plot a power spectral density of the transverse response in
Figure 6.

Note that the frequencies are normalized to the Nyquist frequency, which is equal to
500 Hz; or about 3100 rad=s; for the responses given in this paper. By itself, this spectrum
tells us that the tower has oscillation frequency components at many frequencies, with
most of the energy contained in frequencies less than about 20 Hz; and the presence of
some harmonics. There is an exception to this rule, and that occurs at about 190 Hz: The
first thought upon seeing this spike is that it is likely to be due to the coupling between the
transverse and extensional motion, or in other words, that this frequency corresponds to
the frequency of the extensional oscillation. The power spectrum for the extensional
motion, given in Figure 7, confirms this suspicion, as the plot shows a prominent peak in
the same frequency range (about 190 Hz).

This spectrum also shows a harmonic at around 260 Hz; which is reflected in the
transverse power spectrum. Also note the scale on both plots; the peaks in question are
about the same magnitude on both plots as well. The very high frequency energies can be
considered noise, as their magnitude is relatively small as well.

Our next example has changed the forcing to F0 ¼ 0�002 sinðtÞ þ 0�001 cosðtÞ; while
retaining zero initial conditions. The lower forcing frequency has caused a qualitative
change in the response, while leaving the maximum amplitude relatively unchanged, as
shown in Figure 8. The transverse response looks like a sum of two sinusoids of different
frequency (ignoring the high-frequency contribution from the coupling to extensional
motion), even though the forcing consists of two sinusoids of identical frequency. This
Figure 6. Power spectrum for the transverse response to F0 ¼ 0�002 sin 10t:



Figure 7. Power spectrum for the extensional response. Note the peak at 190 Hz:

Figure 8. Responses to F0 ¼ 0�002 sinðtÞ þ 0�001 cosðtÞ:
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qualitative result highlights the non-linear character of the system. The maximum strain
here was found to be 2�82%:

The power spectrum for the transverse response in this case (Figure 9) looks remarkably
similar to the spectrum for the previous case. We have a large amount of energy in the low



Figure 9. Power spectrum for the transverse response to F0 ¼ 0�002 sinðtÞ þ 0�001 cosðtÞ:
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frequencies, along with the double peak around the extensional oscillation frequency and
its harmonic.

The next example uses F0 ¼ 0�003ðsinð5tÞ � cosðtÞÞ; retaining the same initial condi-
tions. The transverse response, as presented in Figure 10 is again quite different than the
previous cases, but retains its oscillatory character. The maximum amplitude and
maximum strain have diminished from the previous examples, with the strain at a value of
1�65%: The response shows some characteristics similar to beating. The power spectrum
for this case is similar to the previous two, and is not given here for brevity.

Our final example response with zero initial conditions involves a Fourier series as the
input. We applied the sequence

F0 ¼
0�003ffiffiffi

2
p þ 0�001

50

X50
n¼0

cosðn2tÞ; ð40Þ

where the amplitudes are chosen to give a force amplitude comparable to the previous
simulations, and the frequency range is chosen to be broad, giving a wide input spectrum,
plotted in Figure 11. Note the broad band of frequencies provided as inputs.

The response to the Fourier input is presented in Figure 12. Note that the transverse
response magnitude is relatively unchanged, while the transverse response form is more
explicitly periodic than in previous responses. Also, the response shows some slight
variation in amplitude, perhaps due to another appearance of a beating-like phenomenon.
The maximum strain for this case was 2�88%:

The power spectrum in this case is also of interest, since with the broadband input
spectrum, the output energies will be those not filtered by the structure. Looking at Figure
13, we find that the spectrum here is not markedly different than for the previous cases.
This similarity reinforces the view of the structure as a filter, allowing oscillations at



Figure 10. Response to F0 ¼ 0�003ðsinð5tÞ � cosðtÞÞ:

Figure 11. Power spectrum of the Fourier series input.
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energies corresponding to its fundamental frequencies, in both the transverse and
longitudinal directions.

Our next case is the response to this same Fourier series input forcing, except now we
also introduce an initial angle of y0 ¼ 0�0578: (This angle was chosen for convenience, as



Figure 12. Transverse response to the Fourier series input F0 ¼ 0�003=
ffiffiffi
2

p
þ ð0�001=50Þ

P50
n¼0 cosðn2tÞ:

Figure 13. Power spectrum for the transverse response to the Fourier series input.

S. N. KUCHNICKI AND H. BENAROYA918
its tangent is 0�001:) Note that the initial displacement at the top of the tower (1�2 mm) is
greater than the maximum displacement with zero initial conditions. The resulting motion
is shown in Figure 14. The response retains the same character as with no initial
displacement, except now the extreme displacements have become greater. Also, the



Figure 14. Response of the system to the same Fourier series input, with initial angle 0�0578:
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maximum strain at the end has decreased to a value of 2�29%: The power spectrum for this
simulation is virtually identical to that for the Fourier response with zero initial
displacement, and thus is omitted.

Finally, we reconsider the forcing function F0 ¼ 0�003ðsinð5tÞ � cosðtÞÞ with the same
initial angle (0�0578Þ: In this case, the initial angle gives approximately half of the
maximum displacement for the time period considered with zero initial displacement. The
response with a non-zero initial angle is shown in Figure 15.

Again, we see that the maximum response amplitude has increased, and that the general
shape of the response is similar. The main difference between this response and that in
Figure 10 is that the smaller-amplitude portions of the response (around 10 and 20 s; for
example) have a larger amplitude relative to the maximum response amplitude when we
include the initial angle. As with the Fourier input, the maximum strain has decreased, this
time to 0�62%: Again, the power spectrum for this response is identical to that for the same
system with zero initial displacement.

7.3. EXPERIMENTAL FORCING

Having tested the several cases shown above, we now move on to the external forcing
found via experiment. The experimental input force is a force per unit length. Then we are
able to use the Fourier series representation of the input force as the transverse force F0;
since the flexible model uses a force integrated along the length. The experimental input
force is given in Figure 16 and the experimental response is plotted in Figure 17. The
resulting end extension and transverse deflection are shown in Figure 18.

The analytic response shows no beating behavior. Also, the period of the analytic
response is about 1�1 s; whereas the experimental response period is 1�5 s: We cannot



Figure 15. Transverse response of the system to F0 ¼ 0�003ðsinð5tÞ � cosðtÞÞ and initial angle 0�0578:

Figure 16. Input forcing from experimental data.
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compare the magnitude of the response at the end to the experimentally measured
response, since the laboratory apparatus measures the response at a point below the
surface of the water. In our discretized tower system, the 12th node from the bottom of
the tower is the closest to the point at which the response is experimentally measured.



Figure 17. Experimental response to the given input dataset.

Figure 18. (a) Extensional and (b) transverse responses of the flexible model to the experimental input forcing.
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Figure 19 gives the response at the closest node to the point at which the experimental data
is taken. The maximum response corresponds to the minimum amplitude of beating in the
experimental response. The frequency of the response also does not match the
experimental data.

There are several possible reasons for the discrepancies above. The input force most
likely has a three-dimensional profile, which was not reflected in the force input to the



Figure 19. Response at node 12, the closest node to the point where the experimental data was taken.
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model. Also, a cart/track system is used to constrain the cylinder to planar motion. This
system provides damping to the cylinder by applying a force at the top end of the
structure. For the discretized system modelled here, inclusion of damping is not as simple
as it would be for a rigid system. Applying a damping force solely to the top node of the
simulated structure has not produced satisfactory results, nor has use of a rigid-body angle
and proportional damping at each node.

8. MONTE CARLO SIMULATION

The previous section introduced a model for the structure response that included
bending and extensional motions. Several responses were given to different input forcing
functions. The individual simulations only give a narrow sampling of the structure
behavior in the presence of different inputs. Thus, to give a better idea of the overall
structural behavior, we perform a Monte Carlo simulation, capturing response statistics.
A discussion of random processes can be found in reference [11], and background on the
Monte Carlo procedure in reference [12]. For the study at hand, it is sufficient to note that
the Monte Carlo method can be broken down into three steps: simulation of the random
variable, solution of the deterministic problem for a large number of random variable
realizations, and statistical analysis of the results. The following sections detail these steps
for our particular problem.

8.1. SELECTION OF INPUTAND OUTPUT VARIABLES

In order to perform a Monte Carlo simulation, we need to choose several input
variables and their probability distributions. Then we will examine the statistics of certain
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parameters of the output that will help create a better picture of the overall response
behavior.

There are several input parameters that we can vary. For the current study, we chose
three: the maximum response amplitude, Amax; the number of input frequencies, Nf ; and
the initial angle, y0: We chose ranges of values for each of these parameters based on
experience gained by creating the plots shown earlier, arriving at the chosen ranges in
equation (41):

0�001 m4Amax40�1 m; 204Nf 450; �18 � y0418: ð41Þ

The output parameters of interest are maximum strain and maximum transverse
deflection at the upper end. In a design problem, these could be the key parameters used to
define the design space; the maximum strain criterion ensures that the response is elastic,
and the maximum transverse deflection criterion gives a measure of crew comfort for an
offshore tower for this study.}

8.2. INPUT DISTRIBUTIONS

The form of the distributions of the inputs needs to be determined as well. This decision
is partially dictated by the software chosen for the simulation (MATLAB), since it is more
convenient to use a built-in random number generator than to create one. Fortunately,
MATLAB contains built-in generators for uniform and standard normal (Gaussian, m ¼
0; s ¼ 1Þ distributions. The uniform distribution is useful for the case where only the
upper and lower bounds of the distribution are available, and the Gaussian form is
worthwhile because it is representative of a broad range of physical phenomena.

The input to the uniform distribution is straightforward. The rand function within
MATLAB generates a uniformly distributed random number between zero and one. Thus,
to create a random input, the output from rand is multiplied by the length of the input
range and added to the lower value. For example, if rA;k is the output from rand for the kth
simulation to find the input amplitude, then

Amax;k ¼ 0�001 mþ ð0�099 mÞrA;k: ð42Þ

There are three important notes to this calculation. First, different random numbers were
used for each variable during each simulation. This means that if rA;k is defined as above,
and ry;k is the output from rand used to find the initial angle, rA;k=ry;k in general. In other
words, we are not necessarily taking all three random input values from the same portion
of each distribution. Second, the number of input frequencies must be an integer. Thus,
the result of the counterpart to equation (42) for the number of frequencies is rounded to
the nearest integer. Finally, our input range for y0 is given in degrees, but MATLAB
works in radians. A conversion must then be made at some point in the calculation.

The input form for the Gaussian distribution is slightly more complex. The Gaussian
distribution within MATLAB (the randn command) generates a random value on a
distribution with zero mean and standard deviation of one. Thus, we can use the randn

command only if we know the mean and standard deviations for our input variables. Since
we do not know those values explicitly,} we need to find a way to create them. Since over
99% of the values in a Gaussian distribution are within three standard deviations ð3sÞ
above and below the mean, we take the extreme values of the chosen ranges as three
}The usual criterion for ride comfort is low-frequency acceleration in transverse and extensional directions. We
choose a somewhat simpler criterion here.

}We have constructed reasonable but assumed ranges.
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standard deviations from the mean.k Now defining rA;k as the output from randn for the
kth simulation to find the input amplitude, our formula for Amax;k becomes

Amax;k ¼ mA þ sArA;k; ð43Þ

where mA is the calculated mean of our range of Amax values, and sA is the standard
deviation. The same notes apply to this calculation as the uniform calculation; that is, the
random inputs are not necessarily from the same portion of the distribution, the number
of input frequencies must be an integer, and the input angle must be in radians.

8.3. OUTPUT FORMS

We selected maximum strain and maximum displacement at the end of the tower as our
variables of interest. Note that both of these variables will always be non-negative. Thus,
we will get one-sided distributions for our variables. We will also find the mean and
standard deviation for the outputs from both the uniform and Gaussian distributions.
This data will allow us to make statements about the overall behavior of the system.

8.4. COMPUTATIONAL DETAIL

All that remains is to select a number of simulations and a platform upon which to run
them. We wish to have our overall input distributions as close to the expected form as
possible, for which more simulations is the answer. However, we also have the limitation
of computational time and resources, so we arrived at 200 as a reasonable number of
experiments to run. As we shall see, even though the input distributions that arose from
200 simulations were not ideal, their statistics matched well with the assumed forms.

We were able to use the Rutgers Computational Grid (RCG Cluster) to run these
simulations. The RCG Cluster is a pilot program at Rutgers University, consisting of 107
Pentium II and III processors on Linux-based systems. The load sharing facility (LSF)
software used on the cluster allows several batch jobs to be submitted simultaneously.
Their progress can be monitored through the standard output. The batch jobs, however,
do not take precedence over jobs submitted by the actual owner of the processor; the jobs
submitted through LSF run when the processor in question is otherwise idle. We
submitted our Monte Carlo simulations in runs of 50 simulations each, with each
simulation consisting of 10 s of response time. Each batch of 50 took approximately 10
days to complete on the cluster. For comparison, a set of 10 simulations, each reflecting
10 s of response time, took about 12 h to complete on a Pentium III 533 MHz processor,
with 256 Mb of RAM and running Windows 98. The difference in computational time
arises because the Windows machine was dedicated solely to the Monte Carlo simulation,
while the machines of the cluster were only running the Monte Carlo jobs for part of the
day.

9. SIMULATION WITH GAUSSIAN INPUTS

We performed Monte Carlo simulations with both uniform and Gaussian input variable
distributions. The Gaussian distributions led to better results, and thus we present only the
results using Gaussian variables here.
kThis means the entire chosen range covers 6s:



VORTEX-SHEDDING RESPONSE 925
We begin by showing histograms of our input variable distributions for the 200
simulations performed. Figure 20 is a histogram of the force amplitudes input to the
simulation. The mean amplitude is 0�0467 N=m; and the standard deviation is
0�0142 N=m: From the above, the mean of the input amplitude is 0�0505 N=m and the
standard deviation 0�0165 N=m; so the data for the simulation mirrors our assumed input
form for the program.

Figure 21 is the input frequency histogram of the number for the Gaussian simulation.
Note that this number must be an integer. The mean of the distribution shown is 35�5; and
the standard deviation 4�73: The mean used in the code was 35�0; and the standard
deviation 5�0; so this distribution has similar statistics to the assumed input.

Finally, we show the distribution of initial angles in Figure 22. The mean initial angle is
0�0348; and the standard deviation 0�2878: This compares favorably to the assumed mean
of 08 and standard deviation of 0�3338; in spite of the somewhat non-Gaussian behavior of
the distribution around �0�28:

With the inputs for the Gaussian simulation characterized, we move on to the output
histograms. Figure 23 gives the distribution of the maximum end strains. The figure shows
that 181 of the 200 runs had a maximum strain of less than 5%. However, plastic
deformation was assumed to set in at 4% strain. Further examination of the data shows
that 165 of the 200 simulations, or 82�5%; remain within the elastic region. The mean
maximum strain is 3�6%; with a standard deviation of 4�97%: Again, to compare this
distribution to a classical Gaussian distribution, we should use one-half of the calculated
standard deviation as the standard deviation. By this measure, we would expect about
98% of the data to fall between zero and 8�6% strain. Examination of the data shows that
181 of the 200 simulations fall in this range, or 90�5%: So the output distribution is not
Gaussian. This result is not unexpected since the system being examined is non-linear.

The other output of interest is the maximum end deflection, for which a histogram is
given in Figure 24. The mean deflection is 5�6 mm; and the standard deviation is 4�1 mm:
Figure 20. Force amplitude histogram for the Gaussian distribution.



Figure 21. Histogram for the number of frequencies input to the Gaussian simulation.

Figure 22. Histogram of input initial angles for the Gaussian Monte Carlo simulation.
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Note that 174 of the 200 simulations, or 87%, have maximum deflection of 9�7 mm or less.
The mean is approximately 0�004% of the tower length. Approximating scale as
in the previous section, this is comparable to a maximum deflection of 1�4 m over a
350 m tower.



Figure 23. Histogram of the maximum end strains for the Gaussian simulations.

Figure 24. Histogram of the maximum end deflections for the Gaussian simulation.
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10. CONCLUSIONS AND FUTURE WORK

A continuous model for a tower in water has been developed, taking into account the
coupled transverse and extensional motions of the structure. Using experimental data and
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material properties from an experimental set-up, we have simulated several numerical
solutions to the non-linear coupled equations of motion. The solutions presented here all
fall within the elastic range for the material and show stable motion for the time period
simulated. The power spectra from these different simulations over many forcing
frequencies imply that the structure filters out energy inputs at frequencies other than its
harmonics (transverse and extensional). The introduction of a non-zero initial displace-
ment to the system causes an increase in response amplitude, but a decrease in maximum
strain at the tower top and little change in the qualitative aspects of the response.

The model was tested in the presence of experimental force data. Matching between the
model and observed responses needs improvement, mainly due to the presence of damping
in the experimental system. An accurate method for describing the damping force applied
to the model derived here will lead to a model response that better matches with
experimental observation. However, we believe the modelling framework is viable for the
problem under study. There are difficult issues to resolve, but they are being worked out as
we gain a better understanding of the Hamilton–McIver framework.

Monte Carlo simulations were performed to test the system response to a range of
inputs. The model behavior was found to be unsatisfactory for uniform inputs over the
chosen variable ranges. However, the response statistics were quite good for normally
distributed input variables. Since most natural processes are modelled as Gaussian
distributions, the tower model shows acceptable responses to variable sets that more
closely reflect those that may be encountered in nature. Also, the Monte Carlo simulation
used here provides a framework for future model analysis. Changes to the cylinder model
will not change the basic procedure for the Monte Carlo simulation, so the groundwork
for future analyses has been laid here.

Some expansions of this model are warranted. A non-dimensional form of this model
can be instructive, as its responses to different inputs may illustrate response trends in the
presence of flows at different Reynolds numbers. Also, experimental data needs to be
taken at more Reynolds numbers; the dataset used in this work was taken at a Reynolds
number of 2440. Both of these improvements will help with scaling of the model response,
possibly to the scale of offshore structures.

ACKNOWLEDGMENTS

This work is supported by the Office of Naval Research Grant No. N00014-97-1-0017.
The authors are grateful for this support from ONR and program manager Dr Thomas
Swean as well as for his interest in our work. The authors would also like to thank
Professor Timothy Wei of Rutgers University and his experimental group for their
assistance and data.

REFERENCES

1. T. Sarpkaya 1979 Journal of Applied Mechanics 46, 241–256. Vortex-induced oscillations: a
selective review.

2. P. Bearman 1984 Annual Review of Fluid Mechanics 16, 195–222. Vortex shedding from
oscillating bluff bodies.

3. K. Billah 1989 Ph.D. Thesis, Princeton University. A study of vortex-induced vibration.
4. S. Kuchnicki 2001 Ph.D. Thesis, Rutgers, the State University of New Jersey. Analysis of the

vortex-shedding induced response of a compliant structure.
5. R. Adrezin, P. Bar-Avi and H. Benaroya 1996 Journal of Aerospace Engineering 9, 114–131.

Dynamic response of compliant offshore structures}review.



VORTEX-SHEDDING RESPONSE 929
6. S. Han and H. Benaroya 2000 Journal of Sound and Vibration 237, 837–873. Nonlinear coupled
transverse and axial vibration of a compliant structure 1: formulation and free vibration.

7. S. Han and H. Benaroya 2000 Journal of Sound and Vibration 237, 874–899. Nonlinear coupled
transverse and axial vibration of a compliant structure 2: forced vibration.

8. D. McIver 1973 Journal of Engineering Mechanics 7, 249–261. Hamilton’s principle for systems
of changing mass.

9. H. Benaroya and T. Wei 2000 Journal of Sound and Vibration 238. Hamilton’s principle for
external viscous fluid structure interaction.

10. R. Adrezin 1997 Ph.D. Thesis, Rutgers, the State University of New Jersey. The nonlinear
stochastic dynamics of tension leg platforms.

11. P. Wirsching, T. Paez and K. Ortiz 1995 Random Vibrations: Theory and Practice. New
York: John Wiley and Sons, Inc.

12. I. Elishakoff 1983 Probabilistic Methods in the Theory of Structures. New York: John Wiley
and Sons, Inc.


	1. INTRODUCTION
	Figure 1
	Figure 2

	2. MCIVER ’S EXTENSION
	3. ASSUMPTIONS AND FORMULATION
	Figure 3

	4. ENERGIES AND THE LAGRANGIAN
	5. HAMILTON ’S PRINCIPLE
	6. NUMERICAL ISSUES AND DISCRETIZATION
	7. RESULTS AND DISCUSSION
	TABLE 1
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19

	8. MONTE CARLO SIMULATION
	9. SIMULATION WITH GAUSSIAN INPUTS
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24

	10. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

